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Abstract 

Random vibration response of structures with uncertain-but-bounded parameters 

under random process excitation is investigated in this paper. The interval natural 

frequencies, interval mean square displacements and stresses are analysed under the 

framework formed by the theories of structural dynamics and interval analysis. The 

lower and upper bounds of structural dynamic characteristics and random responses 

are determined by solving optimization problems. An improved particle swarm 

optimization algorithm, namely lower sequence initialized high-order nonlinear 

particle swarm optimization algorithm, is adopted to find their exact change ranges. 

Three numerical examples are provided to demonstrate the feasibility of the presented 

method. Quasi-Monte Carlo and Monte Carlo methods are also used to assess the 

effectiveness of the method.  

 

Keywords: Interval analysis, random excitation, random vibration response, 

improved particle swarm optimization algorithm. 

Introduction 

Dynamic behavior of structures with uncertainty has been increasingly investigated as 

structural systems do have uncertainties in loads, geometric and material properties. 

The traditional technique to address these uncertainties is the probability theory. 

However, this technique is not available for most cases as there is not enough 

information to model probabilistic features. This situation requires other models of 

uncertainty which can be accessible for incomplete data. Taken interval analysis 

(Moore, 1966) into account, it can be employed to describe imprecision with known 

lower and upper bounds of altered features. The representation of interval analysis in 

structural engineering, first, was introduced to consider uncertainty in statics 

problems (Köylüoğlu et al., 1995). Many studies regarding interval analysis for static 

and dynamic problems of structures was developed by some authors (Moens and 

Vandepitte, 2001; Muhanna and Mullen, 2001; Qiu et al., 2005; Gao, 2007). The task 

of interval analysis is to achieve enclosures of system outputs which can be converted 

to optimization problems. Although there are various algorithms for treatment of 

optimization problems, PSO presented by Kennedy and Eberhart (1995) is more 

effective with fewer number of iteration to target the same or better results in 

comparison with others algorithms.   (Hu et al., 2003; Elbeltagi et al., 2005). The 

effective application of PSO into different engineering problems including structural 

optimization has been recently shown and developed in the work of some authors. 

The improvement of PSO by means of using randomized low discrepancy sequences 

for initialized particles has been recently considered. Liu et al., (2013) employed the 
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low-discrepancy sequences initialized high-order nonlinear particle swarm 

optimization algorithm (LHNPSO) for interval analysis of vehicle-bridge interaction 

system with simple model of structure. Meanwhile, there are still potential problems 

such as investigation of this method with multi-dimension particles for complex 

structures. In this paper, random vibration response of structures with uncertain-but-

bounded parameters under random process excitation of space truss is studied with 

adoption of LHNPSO. This paper is organized as follows. The next section provides a 

brief introduction of interval dynamic analysis. Then, application of LHNPSO for 

interval analysis and the numerical example are presented in following sections. 

Conclusions are stated in the last section.  

Interval dynamic analysis of structures under random process excitation 

An interval variable  I
x  can also be denoted in as the following (Moore, 1966):   

  cx,x x  I I
x Δx  (1) 

where  cx x x / 2   and  x, x  I
Δx  

Interval analysis is considered as design variables of structures are modeled as 

uncertainty- but-bounded values.  Thus, structural parameters and responses are also 

interval values. The dynamic equation of structures under stationary process 

excitation can be expressed as the following: 

         t t t a tI I I I I I I
M u +C u + K u = -M 1  (2) 

where I
M , I

C  and I
K  are the interval matrices with respect to mass, damping and 

stiffness of structures respectively.  tI
u ,  tI

u and  tI
u are interval vectors 

defining structural displacement, velocity and acceleration in that order.  1  is a 

column vector with all components 1 and  a t is the random ground acceleration. By 

employing Rayleigh’s quotient in the form of modal analysis with normalization of 

modes and spectral matrices, frequency equation is expressed as: 

   
2 T

Idiag
 

  
 

I I I
W φ K φ  

(3) 

 where W , I
φ and I

K are the interval matrices of natural frequencies, normalized-

natural modes and global matrices of stiffness.  

 

The solution of coupled equations presented by Eq. (2) can be achieved by using 

Duhamel integral: 

        
0

t
T

t t a t d   
I I I I I

u φ h φ M 1  (4) 
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In this case,  is assigned as 0. The interval matrix of response function is defined as: 

    

 
 

1
exp sin 0

0 0

I

j

I I

j jD jDII
jDj

t diag h t

t t
h t

t




   

 
 

I
h

 (5) 

By performing a Fourier transformation for the correlation function matrix and 

integrating Eq. (4) step by step, the mean square value matrix of the structural 

displacement   
2

I

u t can be obtained as (Gao and Kessissoglou, 2007):  

               
2

0

T T TT
t d



    
I I I I I I I I I

u p *ψ φ H φ M 1 1 M S φ H φ    (6)  

where     ω pidiag S pS is the equivalent one-side power spectral density matrix 

of  a t . In this paper, model of Kanai-Tajimi designated by (Lin and Yong, 1987) is 

employed to define random ground level accelerations as: 

 
  

   

2

0

2 2
2 2

1 4 / .

1 4 /

g g

pi

g g g

S
S

   
 

     
 (7) 

The modal damping in this paper is given by  0.01 1,2,...,  j j n . Parameters for 

the equivalent one-side power spectral density are defined as the following: 

 16.5g rad s  , 0.7g  ,  2 3

0 15.6 /S cm s . 

 ωI
H is the interval matrix with respect to the frequency response function matrix of 

the structures expressed as:  

    

 
 

2
2

1,2,...,1
,

2

I

j

I

j
I I

j j j

diag H

j n
H

i

  


 

     

I
H

 (8) 

where 1 i is the complex number.  I

*H is interval matrix termed as complex 

conjugate matrix of  I
H . 

 

The mean square value of the kth degree of freedom of structural displacement: 

               2
I

uk

0

ψ

1,2,...,

T
T TT

t d

k n



    




I I

I I I I I I I

p *k k
φ H φ M 1 1 M S φ H φ

 (9) 

where 
I

k
φ is the kth line vector of the matrix I

φ . Similarly, the interval variable of the 

eth element stress response of 3D trusses can be determined as: 

     
2 2

I

σeψ I T T I

e et E t E I

ue
BT ψ T B  (10) 

where   
2

tI

ue
ψ is the interval matrix of mean square value of  teu  
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Random vibration response of structures using the low-discrepancy sequences 

initialized high-order nonlinear particle swarm optimization algorithm 

Random vibration response with uncertain-but-bounded parameters is difficult to 

attain because of its complexity. The methodology of interval analysis is to determine 

the band for structural response based on structural parameters varying within a fixed 

range. In other words, lower and upper bounds are the minimum and maximum 

values of system outputs respectively. Practically, interval analysis problems are 

converted to optimization problems. In this paper, an improved particle swarm 

optimization algorithm is employed to solve presented problems. 

 

The traditional technique of particle swarm optimization, known as PSO algorithm 

was proposed by Kennedy and Eberhart (1995). This algorithm is initialized with a 

population of random solutions called particles. Each particle moves through the 

multidimensional design space corresponding to fitness problem to search its optimal 

position via adjusting its position and velocity simultaneously as the following 

expression: 

               1 1 2 21 1 1 1Pb Gb

ik ik ik ik ik ikv t w t v t c r x t x t c r x t x t          (11) 

     1 1ik ik ikx t x t v t     (12) 

where k  denotes any individual of particle. Pb

ikx and Gb

ikx denote the local best ever 

position and global best position of each individual of particle at iteration 

t respectively. 
1c  and 

2c are the coefficients indicating the degree of directing to the 

better positions of particles. 
1c and 

2c are specified as 
1 20 4c c   , regularly 

1 2 2c c   (Perez and Behdinan, 2007). 
1r and 

2r indicate random numbers ranging 

between 0 and 1. 

 

In recent studies, initialization of particle swarms by low-discrepancy sequences have 

been considering to obtain the better results (Liu et al., 2013). For LHNPSO, the 

constant acceleration coefficients are assigned as 
1 2 2c c  and the nonlinearly 

decreasing inertial weight is varied as the following: 

   

21/

max max min

max

1
k

w t w w w
k



 
     

 
 

 

(13) 

This improved technique of PSO algorithm, known as LHNPSO shows efficiency in 

interval analysis. This technique is employed to capture sharp bounds for structural 

responses for complex structures in the work of this paper where max 0.95w and 

min 0.5w in this paper. The interval structural responses R(x,t) such as natural 

frequency, displacement and stress are used as the fitness functions in the LHNPSO 

and the lower and upper bounds of these functions are respectively the minimum and 

maximum values of investigated variables.   

( , ) max( ( , ))

( , ) min( ( , ))

R x t x t

R x t x t

 




R

R
 (14) 
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Numerical Example 

The performance of work is examined by a space truss with 108 members, shown in 

Figure 1, in which structural responses are investigated by different methods, namely, 

LHNPSO with 100 iterations, Monte Carlo Simulation and Quasi-Monte Carlo 

Simulation with 5000 iterations simultaneously. The comparison of results among 

methods is shown by Table 3, Table 4, and Table 5 while the convergence history of 

selected responses is depicted in Figure 2, Figure 3, and Figure 4 with lower and 

upper bounds. The varied variables for structural design are described as 

 1 2 3, , , ,I I I I IA A A E I
X where their middle values are defined as the following:  

Table 1. Middle values of varied parameters 

  2

1

cA m    2

2

cA m    2

3

cA m    cE GPA    3/c kg m  

 0.007  0.0084  0.014  200  7850 

 

All varied parameters are restricted by the variance within 1 10%  . The structural 

members are divided into three groups as: 

 

Table 2. Groups of structural members 

Group Area Elastic Modulus Density 

1 1

IA  IE  I  

2 2

IA  IE  I  

3 3

IA  IE  I  

 

Each group is defined by members as the following: 

 

Group 1:  1-2, 2-3, 3-4, 4-5, 5-6, 7-8, 8-9, 9-

10, 10-11, 11-12, 13-14, 14-15, 15-16, 16-17, 

17-18, 19-20, 20-21, 21-22, 22-23, 23-24, 

12-28, 18-27, 12-27, 18-28, 11-27, 17-28,11-

28,17-27,27-28, 24-25, 6-26, 25-26, 24-26, 

25-6, 26-5, 25-23, 26-23, 25-5.  

 

Group 2:   14-20, 20-2, 2-8, 8-14, 2-14, 20-8, 

15-21, 21-3, 3-9, 9-15, 15-3, 21-9, 16-22, 22-

4, 4-10, 10-16, 16-4, 22-10, 17-23, 23-5, 5-

11,11-17, 17-5, 23-11. 

 

Group 3:    Other members. 

 

     

Figure 1. 3-D view and top view of the model 
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Table 3. Natural frequency 

Natural frequency  

1st natural frequency  1f Hz   

Method Upper bound Lower bound 

LHNPSO             34.027       26.294 

 QMCS             33.590       26.586 

 MCS             33.576       26.665 

2nd natural frequency  2f Hz   

Method Upper bound Lower bound 

LHNPSO             35.879       27.378 

QMCS             35.224       27.963 

 MCS             35.182       27.791 
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Figure 2. LHNPSO for  1f Hz

Table 4. Mean square root of 

displacement 

Mean square root of displacement 

 12u X mm  

Method Upper bound Lower bound 

LHNPSO             14.080       8.054 

QMCS             13.483       8.300 

 MCS             13.542       8.350 

 27u Y mm   

Method Upper bound Lower bound 

LHNPSO             12.802       7.115 

QMCS             12.141       7.347 

 MCS             12.501       7.336 
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Figure 3. LHNPSO for  27u Y mm

Table 5. Mean square root of 

structural stress 

Mean square root of structural stress 

   5 6 
 MPA  

Method Upper bound Lower bound 

LHNPSO             36.853       25.849 

QMCS             36.124       26.366 

 MCS             36.053       26.330 

   3 10 
 MPA   

Method Upper bound Lower bound 

LHNPSO             29.057       20.079 

QMCS             28.707       20.390 

 MCS             28.676       20.430 
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Figure 4. LHNPSO for 
   5 6 

 MPA
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The selected responses are the first natural frequency, 1f , the second natural 

frequency, 2f , displacements at node 12 in direction X, 12u X , and at node 27 in 

direction Y, 27u Y , stresses of element 5-6, 
 5 6 

 , and element 3-10, 
 3 10 

 . 

Conclusion 

It is observed that bounded range of target solutions of LHNPSO embraces that of 

QMCS or MCS, as shown as Table 3, Table 4, Table 5. In other words, LHNPSO 

provide a sharp enclosure, namely close upper bound and close lower bound with 

reliable precision of convergence. In addition, it takes less time for LHNPSO to 

achieve the target solutions much more than those of QMCS or MCS, namely smaller 

iterations. It is shown that LHNPSO is suitable for dynamic analysis for structures.  
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