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Abstract 

The paper presents a mathematical programming based approach for the safety assessment of 
nonlinear structures that can be subject to a number of predefined load combinations. The objective 
is to determine in a single step the critical load combination, for which the chosen maximum (or 
minimum) response (e.g. stress or displacement) occurs. Assuming elastoplastic material properties, 
the governing formulation takes the form of challenging nonconvex and nonsmooth optimization 
problem, known as a 0-1 mathematical program with equilibrium constraints or 0-1 MPEC. The 
numerical algorithm proposed to solve the 0-1 MPEC is a regularization technique that involves 
iteratively processing a series of reformulated mixed integer nonlinear programming problems 
(MINLP) using a penalty function. Optimal solutions to each MINLP subproblem are obtained by 
the proposed novel space search formulation or FSS scheme. 

Keywords: Structural design, Multiple load cases, Elastoplasticity, Integer program 

Introduction 

The safety assessment of structures under multiple load cases provides a well-accepted numerical 
approximation for the critical structural responses, such as the extreme maximum and minimum 
bound values to some specified variables of interest, e.g. member forces, nodal displacement, etc. 
Various papers in this area (see e.g. Mullen and Muhanna, 1999; Suarjana and Law, 1994) have 
established reliable theoretical and numerical treatments, albeit solely for elastic material related 
problems. It is useful, and often mandatory, to incorporate the influence of material nonlinear 
properties for the realistic assessment of practical engineering mechanics applications. 
 
The present study proposes a pair of novel mathematical programming based approaches to directly 
identify the maximum bound value in one case and the minimum bound value in the other case to 
some selected set of response variables of an elastoplastic structure subjected to various pattern load 
cases. The governing problem takes the “nonstandard” and difficult form known in the nonconvex 
and/or nonsmooth optimization theory as a 0-1 mathematical program with equilibrium constraints 
or 0-1 MPEC (Kocis and Grossmann, 1989; Luo et al., 1996). The specific equilibrium constraints 
are characterized by complementarity conditions (representing plastic behavior). We propose a 
penalty regularization technique to transform the challenging original 0-1 MPEC to a standard 
mixed integer nonlinear programming or MINLP problem, and then successively solve a series of 
MINLP subproblems to iteratively enforce the complementarity. A novel formulation space search 
or FSS algorithm (López and Beasley, 2013) is adopted to capture the best (optimal) solution for 
each of the MINLP subproblems. We illustrate the application and robustness of the proposed 
method through one of the many examples we have solved. 
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Critical Load Combinations as a 0-1 MPEC 

Our work adopts a standard “line” finite element framework, where the structure is suitably 
discretized into n elements, m basic stresses/strains, d degrees of freedom and y yield functions. The 
nonlinear material properties are accommodated through the classical plastic hinge concept. 
Plasticity is confined solely at fixed critical zones, namely the two ends for each generic element, 
whilst the rest of the member between these ends remains elastic. A computationally advantageous 
piecewise linear plastic concept (Maier, 1970) is adopted to provide a close approximation to the 
actual nonlinear yield surfaces, as a number of linear hyperplanes. 
 
The generic formulations describing the path-independent or holonomic elastoplastic response of 
the structure under a single load case are written as follows (see e.g. Maier, 1970; Tangaramvong 
and Tin-Loi, 2007, 2008): 

 ,FQC =T  (1) 

 ,peCu +=  (2) 

 ,EeQ =  (3) 

 ,Nλp =  (4) 

 .,, 0    TT =≥≥+−= λw0λ0rQNw  (5) 

More explicitly, equilibrium between basic stresses Q ∈ ℜm and externally applied forces F ∈ ℜd is 
given in Eq. (1) through a (constant) compatibility matrix C ∈ ℜm×d. The linear compatibility 
relation between nodal displacements u ∈ ℜd and basic strains, written as a summation of elastic 
e ∈ ℜm and plastic p ∈ ℜm strains, is described in Eq. (2). The elastic constitutive behaviors are 
expressed in Eq. (3) using a positive definite stiffness matrix E ∈ ℜm×m. 
 
The associative flow rule in Eq. (4) defines the plastic strains p as functions of plastic multipliers 
λ ∈ ℜy through a constant normality matrix N ∈ ℜm×y, which collects unit normal directions to all 
piecewise linear yield hyperplanes. Finally, the complementarity condition (viz. wTλ = 0) in Eq. (5) 
between the two sign-constrained variables, namely the yield functions w ≥ 0 ∈ ℜy and the plastic 
multipliers λ ≥ 0 describes the inherent holonomic structural behavior that permits reversal of 
plastic strains at the potential plastic hinges, where r∈ ℜy is a vector of yield limits. 
 
Simply collecting and manipulating the governing holonomic Eqs (1) to (5) provides the following 
state problem in mixed static-kinematic variables (Q,u,λ): 
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 (6) 

The state problem given in Eq. (6) is a mixed complementarity problem or MCP (Dirkse and Ferris, 
1995a). For any predefined force vector F, the key response variables (Q,u,λ) can be obtained by 
solving the MCP (6) using, for instance, the state-of-the-art complementarity solver, namely PATH 
(Dirkse and Ferris, 1995b), that is available from within the general algebraic modeling system or 
GAMS (Brooke et al., 1998), that we adopted for this work. 
 



3 
 

When pattern load cases, as for practical design instances, are considered, it is essential that the 
critical load combination leading to the worst value to some response variables of interest is 
determined. An attempt to achieve this typically involves exhaustive trial-and-error and often 
requires excessive computing and designer-time resources, especially when a large number of load 
cases are concerned. To circumvent this, the present method develops a robust optimization 
technique that determines, within a single step, the critical load case associated with the maximum 
(or minimum) response variable of the structure under all possible load combinations. 
 
We first replace the known force vector F in Eq. (6) with the set of all s possible predefined load 
cases f ∈ ℜd×s and additional unknown binary (0 or 1) variables α ∈ ℜs: 

 .fαF =  (7) 

The variables α play the crucial role in automatically selecting which particular load case fi ∈ ℜd 
for i = 1 to s is retained (viz. αi = 1) or eliminated (αi = 0) from the structural system. A direct 
determination is then enabled by forming an optimization problem, in variables (α,Q,u,λ), that 
maximizes (or minimizes) an objective function representing the specific response variable Y (i.e. 
some basic stress Qi, nodal displacement ui, etc.), subject to the constraints describing the 
holonomic elastoplastic relations in Eq. (6) and the multiple load cases in Eq. (7): 
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The problem in Eq. (8) belongs to the challenging class of “nonstandard” optimization programs, 
known as a 0-1 MPEC (Kocis and Grossmann, 1989; Luo et al., 1996). In addition to the difficulties 
associated with the presence of complementarity constraints making the problem severely 
nonconvex and/or nonsmooth, the binary variables α impart computationally nasty disjunctive and 
combinatorial conditions to the 0-1 MPEC (8). To date, there are no known algorithms that can 
guarantee the (global) optimality to the solutions of MPECs, let alone of 0-1 MPECs. The best 
method is often dependent on the nature of the specific problem. 

Penalty-FSS Algorithm 

In this section, we propose a combined penalty regularization (Tangaramvong and Tin-Loi, 2007, 
2008) and FSS (López and Beasley, 2013) technique as a scheme to obtain the optimal solutions of 
the 0-1 MPEC (8). The 0-1 MPEC (8) is first reformulated as a standard MINLP problem by 
replacing the complementarity condition with the penalized term (viz. µwTλ or −µwTλ) added 
directly to the objective function, where µ denotes a (positive scalar) penalty parameter. We attempt 
to enforce the complementarity condition by iteratively increasing the parameter µ. Thus, the 
penalty algorithm we use processes a series of MINLP subproblems, each represented by  
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with increasing µ (e.g. µ = 10µ) until the preset tolerance on the original complementarity condition 
(e.g. wTλ ≤ 10−6) is satisfied. 
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The success of the penalty method relies on the ability to capture the optimal solutions for each of 
the MINLP subproblems (9). Unfortunately, directly processing such a problem entails severe 
combinatorial difficulties and is likely to fail in generating optimal results. A better numerical 
(albeit heuristic) method, namely FSS (López and Beasley, 2013), is proposed to circumvent these 
challenges, by simply adding the following additional nonlinear constraint to increase the 
“tightness” of the original MINLP (9): 

 ,γ≤− )(T α1α  (10) 

where γ is a (positive) relaxation parameter to FSS and 1 a unit vector. Therefore, the original 
MINLP subproblem (9) can be rewritten as: 
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The algorithm attempts to explore, at inner-level iterations, various different sets of MINLP 
solutions by initially setting γ to some suitable value and subsequently decreasing γ to tighten the 
binary constraints. After obtaining the multiple sets of MINLP solutions, the best value is selected 
as the “optimum” to the original MINLP (9). 
 
The proposed penalty-FSS algorithm can be summarized in the pseudocode as follows: 
 
Step (a) – Initialization 

• Set: initial γ, µ, maximum penalty iterations (maxplt), maximum FSS iterations (maxfss), 
100T =λw , 0=bestY  for maximization (or 1000=bestY  for minimization), rpt = 0 

Step (b) – Penalization 
• For j = 1 to maxplt 

 if 6T 10−≤λw , terminate, end 
 go to FSS Step (c) to obtain the solutions of MINLP (9) 
 increase µ = 10µ 
end 

Step (c) – FSS 
• For k = 1 to maxfss 

 if rpt > 3 or γ ≤ 10−5, terminate, end 
 solve MINLP (11) 
 if Y = Ybest 
  count rpt = rpt + 1 
 elseif Y > Ybest for maximization (or Y < Ybest for minimization) 
  update: Ybest = Y and variables (αbest,Qbest,ubest,λbest) 
  reset rpt = 0 
 end 
 decrease γ = 0.1γ 
end 

• Update: Y = Ybest, α = αbest, and so on. Return to Step (b) 
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In Step (a), we initialize the penalty parameter to µ = 1, and the FSS relaxation parameter γ by 
processing the following relaxed (continuous but bounded) system to the original MINLP 
problem (9) in noninteger variables (α,Q,u,λ):  
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and hence from the solutions obtained in Eq. (12)  

 .)(T α1α −=γ  (13) 

It is clear that the optimization given in Eq. (12) is a standard nonlinear programming or NLP 
problem that can be easily solved by any available NLP code, such as GAMS/CONOPT (Drud, 
1994). Furthermore, the solutions obtained from the relaxed NLP (12) provide a good 
approximation to the initial variables of MINLP (11). 
 
In Step (b), each MINLP (9) subproblem is processed using the FSS scheme in Step (c), where a 
series of increasingly “tighter” MINLPs (11) is solved by systematically reducing the value of γ. 
Thus, different sets of solutions to MINLP (11) are generated, and the best optima are updated. The 
FSS Step (c) terminates when either the MINLP (11) solve finds more than three consecutive 
identical solutions or the FSS parameter γ is sufficiently small, namely γ ≤ 10−5. 
 
We process the MINLP solve using the GAMS/DICOPT solver (Kocis and Grossmann, 1989). The 
proposed penalty-FSS algorithm is coded within a MATLAB framework that is linked directly to 
the GAMS environment through a MATLAB-GAMS interface software (Ferris, 1998). 

Illustrative Example 

The three-span continuous beam in Fig. 1 with three identical vertical point loads of 80 kN, each 
independently applied at midspan, is considered. This structure was previously investigated by 
Mullen and Muhanna (1999) to illustrate applications of the fuzzy finite element method to obtain 
the maximum and minimum bounds to the bending moments under multiple load combinations, 
where only elastic material properties were assumed. 
 

 

1 2 3 4 5 6

80 kN 80 kN 80 kN

2@6m = 12m 2@6m = 12m 2@6m = 12m

 
 Figure 1. Three-span continuous beams under multiple load cases. 

 
In the present study, we further incorporate the influences of elastic perfectly plastic material (steel) 
properties: modulus of elasticity of E = 2 × 108 kNm−2; cross sectional area of A = 6000 × 10−6 m2; 
second moment of area of I = 30 × 10−6 m4; and flexural force plastic capacity of Q2u = 175 kNm. 
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As is practical for the beam structure, a pure bending yield model is adopted for each of the 
potential plastic hinges, namely at member ends. 
 
The beam discretization consists of 6 elements, 18 basic stresses/strains, 16 degrees of freedom and 
24 yield functions. The pattern loads generated by the three point loads (Fig. 1) lead to 8 possible 
combinations (e.g. one point load at each span, two point loads at two adjacent spans, etc.). 
 

Table 1. Critical bending moments and associated load patterns by penalty-FSS method. 

 Element 1 Element 2 Element 3 
1
2Q  1

3Q  2
2Q  2

3Q  3
2Q  3

3Q  

Maximum Y − 175 

{A} 

36 

{B} 

32.5 

{C} 

168 

{D} 

168 

{B} 

Minimum Y − −36 
{B} 

−175 
{A} 

−168 
{D} 

−32.5 
{C} 

−130 
{E} 

 

 

(a)

(b)

(c)

(d)

(e)
 

Figure 2. Critical load combinations (a) pattern A, (b) pattern B, (c) pattern C, (d) pattern D 
and (e) pattern E, where ο denotes plastic hinge. 

 
The proposed penalty-FSS algorithm successfully computed the critical (viz. the most maximum 
and the least minimum) bounds to flexural forces (unit kNm) at the two start iQ2  and end iQ3  nodes 
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for each of the members 1 to 6. In view of symmetry of the structural system, the obtained results of 
a half beam, namely members 1 to 3, are summarized in Table 1, where positive and negative signs 
define clockwise and anticlockwise flexural directions, respectively. The critical load patterns (also 
indicated in brackets in Table 1) corresponding to each of the 0-1 MPEC solutions are displayed in 
Fig. 2. The CPU times are not reported as each of the 0-1 MPEC (8) solves only took few seconds 
to furnish the results for the modest 2.7-GHz Pentium personal computer with 3-GB RAM running 
WinXP. 
 
The accuracy of these optimal solutions is validated through a comparison with the results found 
from the complete (exhaustive) MCP (6) solves involving 8 possible load combinations. 

Conclusions 

A mathematical programming based penalty-FSS method has been proposed for the direct 
determination of the critical bound to some response variables of structures under multiple load 
cases. The present study incorporates the influences of material (elastic perfectly plastic) 
nonlinearity, as is necessary for the realistic safety assessment of the structures. The key feature of 
the proposed scheme is to compute, within a single step, the most maximum in one case and the 
least minimum in the other case response values of interest for the structure subjected to known 
design multiple load combinations. The specific pattern load corresponding to each of the critical 
bounds is obtained as a by-product. 
 
The governing problem takes the form of a challenging optimization problem, known in the 
nonconvex and/or nonsmooth optimization literature as a 0-1 MPEC. To circumvent the difficulties 
associated with nonconvexity and disjunctiveness, a penalty-FSS algorithm has been proposed. 
Such a scheme enforces the complementarity condition by iteratively processing a series of 
penalized MINLP subproblems with successively increasing penalty parameter. The solutions of are 
searched at an inner-level enumeration using the FSS technique by introducing an additional 
“tightness” constraint to the MINLP subproblem. By suitably decreasing the FSS relaxation 
parameter, various different sets of optimal solutions to the original MINLP subproblem can be 
identified, and the algorithm then selects the best optimum. 
 
A number of numerical examples, a simple one of which has been provided herein, indicate the 
robustness and efficiency of the proposed penalty-FSS method. The scheme can accurately capture 
the desired optimal bound solutions, as validated by computationally expensive exhaustive MCP 
solves representing all possible load cases. 
 
A straightforward extension to the present scheme is to incorporate various other nonlinear 
behaviors found in practical engineering mechanics applications, such as nonlinear geometry and 
physically instabilizing softening materials. 
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