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Abstract 

Coriolis mass flowmeters (CMFs) are increasingly used in the oil and gas industry with feature of 
directly measuring mass flow rate. The performance of CMFs influenced by on-line viscosity still 
needs further study. A computational fluid dynamics model of U-shape CMF was developed. The 
simulation results were evaluated in terms of the natural frequency of the vibrating system and the 
corresponding phase difference between the motions of the sensing points symmetrically located on 
the measuring tube. The simulations were conducted on comparison between water and viscous 
liquid with flow rates spanning the laminar and turbulent regions. The effects of viscosity on mass 
flow measurement by CMFs are discussed in details. The findings in the simulations can be used for 
further compensation of deviation due to viscosity effects. 

Keywords: Coriolis mass flowmeter, Fluid-structure interaction, High viscosity, Deviation, Mass 
flow rate 

1. Introduction 

Coriolis mass-flow measurement is used in a huge range of industry sectors, including 
pharmaceuticals, chemicals and petrochemicals, oil and gas, and food. Although a Coriolis mass 
flow meter (CMF) is independent of flow profile or installation effects, it may be dependent on the 
Reynolds number (Re) of the mean flow. The measurement deviation at low Re has significant 
importance in the metering of highly viscous fluids. Several laboratory and field measurements with 
certain devices clearly indicate that there can be a shift in the meter calibration factor at viscous 
liquid (Henry, Tombs et al. 2006, Kumar and Anklin 2011). 
 
The flow measurement industry is one such example where application of these numerical tools is 
helping to improve product quality and to find innovative solutions. In many flow measurement 
devices, especially a CMF, fluid-structure interaction (FSI), i.e. where computational structural 
mechanics (CSM) and computational fluid dynamics (CFD) need to be coupled, related problems 
are often encountered and a complete understanding of physical phenomena occurring in devices 
becomes vital (Bobovnik, Mole et al. 2005, Mole, Bobovnik et al. 2008). As far as CMFs are 
concerned, there are a few attempts to simulate a CMF using coupled FSI approach (Mole, 
Bobovnik et al. 2008, Kumar and Anklin 2011). 
 
In this paper, a three-dimensional coupled fluid-structure numerical model of a U-shape Coriolis 
flowmeter is presented. The excitation force has been complemented to address properly the forced 
vibration conditions of CMF, and then the CFD model is employed for the CMF operating under 
inflow fluid conditions with different viscosity. Results from coupled fluid-structure numerical 
simulations mainly for varied viscosity are presented. With the help of these simulations the fluid 
dynamic effect responsible for the meter deviation at different viscosity can be understood, and 
better resemblance can be achieved between the numerical model simulation and the true operation 
of the CMFs. 
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2. MATHEMATICAL MODELS 

The fluid-conveying measuring sensor tube in the Coriolis mass flowmeter is maintained to vibrate 
periodically at its natural frequency under impulsively forced vibration conditions (resonance). 
Mass flow is usually measured as the time or phase difference between the motion of two sensing 
points (S1 and S2) on the tube, which are positioned symmetrically along the tube length. However, 
the distortion of symmetry of the no-flow drive mode is resulted from the interaction between the 
motion of the tube and the fluid flow due to the CMF’s inertial force field, where the straight 
measuring tube is clamped at both ends and vibrating at its first natural frequency. This section 
presents the governing equations and corresponding general boundary/initial conditions which we 
have used in the present simulations. 

 
2.1 Fluid domain 
The conservation equations of mass and momentum are written in the integral form for the three-
dimensional spatial distribution and time range ( 0t  ) of fluid flow as 
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where movement of fluid flow with the density ( , )F x t and the velocity ( , )FV x t in the domain 

F ( Fx ) are influenced by the motion of a surrounding boundary velocity sv , Γ denotes the 

surface-area vector. The vector ( , )F x tf in the momentum equation (2) is the volume forces acting 

inside the domain F , and ( , )F x t is the resulting tensor. 

 
The respective boundary conditions can be written as 

inflow( , )F x t V V , inflowx , 

outlow( , )Fp x t p , outflowx , 

( , ) ( , )F sx t v x tV , tube ( )mx t , 

( , ) 0F x t V , tube ( )inx t , tube ( )outx t ,      (3) 

where inflowV is the inflow fluid velocity,   is the fluid boundary, outflowp is the absolute fluid 

pressure at fluid outflow, and ( , )sv x t is the velocity of the measuring tube surface. 

 
2.2 Structure domain 
The conservation of momentum principles is utilized for the three-dimensional spatial distribution 
( sx ) and time evolution ( 0t  ) of the structural response, where the respective equation of 

motion can be derived by Hamilton’s variation principle, 
2
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where pW and KW are the total potential energy and the total kinetic energy of the moving solid 

structure, respectively. The detailed expressions for them are defined as (Mole, Bobovnik et al. 
2008), 

1
:

2 s s
P s s s s PW d d 

 
       P u F r      (5) 

1
( )

2 S
k s s sW d


   v v         (6) 



3 
 

where the surface tractions ( , )s x tP  acting upon the moving shell boundary through the respective 

displacement field ( , )s x tu , and the concentrated force ( )tF  at point P, where the forced vibration is 

generated. ( , )s x t  and ( , )s x t are the strain and the stress tensor in the shell structure, and Pr is the 

position vector of point P where the force F is applied. ( , )s x t is the structure material density and 

( , )s x tv is the structure velocity field. 

 
At 0t  , the initial velocity and acceleration fields, ( ,0)s xv and ( ,0)s xa must be given, and 

( ,0) ( ,0) 0s xx x   . At 0t  , 

                                                  ( , ) 0s x t u , tube
ux , 

( , ) ( , ) ( , )s sx t x t x t σ n P , tube ( )ux t ,  

 ( ) ( ( ),0,0)t tF F , Px x                                (7) 

For the structural-side boundary conditions, the sensing tube was fixed at both ends. In order to 
simulate the tube exciter, a periodic or harmonic force was applied at the center of tube point P. The 
first frequency of the sensing tube (the drive frequency of the meter) is equal to the frequency of the 
oscillating force. A periodic force was applied at the centre Point P to oscillate the pipe in the x-
direction, 

  0( ) ( sin(2 ),0,0)dt F nf t F          (8) 

where t is the integration time step, df denotes the drive frequency, and 0F represents the 

amplitude of the periodic force.  
 
2.3 Method of analysis 
The present simulation uses the ANSYS Workbench framework employing DesignModeler, 
SIMULATION, ANSYS, CFX Mesh and CFX solver. The pipe is created in DesignModeler, with 
the structural and fluid domain representing the tube wall and the fluid inside the tube. 
SIMULATION and CFX Mesh are used to mesh the solid and fluid domain, respectively.  

 
To determine the investigated tube’s natural frequency, a modal analysis of the solid domain is 
conducted in ANSYS. The determined natural frequency is used to calculate the excitation force at 
point P. And then a dynamic response analysis for the solid domain is performed based on the linear 
elastic theory, where the deformations of the sense tube are assumed to be small. And it can 
determine the time step for FSI analysis. 

 
To obtain the initial conditions for the transient fluid analysis, a steady state analysis is carried out 
in CFX over the fluid domain. 
 
The two steady state analyses are employed for the transient analysis of the fluid domain. The FSI 
simulations are carried out within CFX (ANSYS v13.0). 
 
During the information transferring, both the kinematic and dynamic constraints are set for the FSI 
interface, 

( , ) | ( , ) |F n F F n sx t x tV V  

( , ) | ( , ) |s n s s n Fx t x tu u  
FSI FSI( )j ij ij iF p d                                  (9) 
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where FSI
jF denotes the total force vector from the CFX solver to the structural solver, and ij  

includes the viscous and turbulent part of the momentum tensors. On the other hand, structural 
displacements ( , )s nx tu are transferred from the structure to the fluid in order to fulfill kinematic 

constraints. 
 

3. RESULTS AND DISCUSSION 

The analyzed U-shape CMF, with geometry as presented in Fig. 1(a), is characterized by the length 
of span L=0.4 m and height of CMF H=0.38 m, and a cross-section geometry which is determined 
by the internal diameter D=0.0254 m and wall thickness δ=1/40D. The distance between the 
symmetrically positioned sensing points S1 and S2 is equal to Ls=0.36 m. The specifications used 
for the simulations in this work are shown in Table 1.  
 
As the structure has multiple degrees of freedom, the structure will vibrate in a different manner at 
different natural frequencies without any application of external forces. Looking at all the 
deformations of the respective frequencies, in order for resonance to occur, the driver has to impose 
a driving force at the natural frequency 73.853df  Hz, as shown in Fig. 1(b).  

a)  
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b) 

 
Figure 1. a) Sensor points, and geometry of the U-shape CMF, and b) modal analysis for 
natural frequency at 73.853Hz. 
 

Table 1. Input parameters for modeling and simulations 

Specifications Dimensions and Values 
Internal diameter of tube (D) 0.0254 m 
Thickness of tube 1/40D 

Material Stainless steel 316 

Poisson ratio 0.3 

Young’s modulus 1.93E+11 Pa 

Density of stainless steel 316 tube 8000kg/m3 

Viscosity of liquid fluid 1 - 500 cSt 

Density of water 998.2kg/ m3 

Tested fluid’s velocities 2m/s - 20m/s 

Number of time steps 100 

 
Through the simulation, the time shift can be gained between the two sensor points S1 and S2, as 
shown in Fig 2. The blue curve plots the displacement at monitor point 1, where the excitation force 
is applied. The red curve plots the displacement at the sensor point S1 which is near the inlet. The 
green curve plots the mesh displacement at the sensor point 2 which is near the outlet. 
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Figure 2. Example result of time difference between sensors S1 and S2.
 
The developed FSI model are employed to investigate the effect on fluid viscosity on the 
performance of the U-shape CMF, including viscosities 50 cSt, 100 cSt, 180 cSt and 500 cSt. The 
results of time shift δt between sensors S1 and S2 for the various viscosities are shown in Fig 3. The 
time shift increases with the nominal flow velocity, and the drift from the result of water (µ=1 cSt) 
of time shift becomes obvious at high velocity. 
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Figure 3. Time shift between sensors S1 and S2 against fluid viscosity. 

 

Figure 4. Deviation to water metering of phase difference for different fluid’s viscosities. 
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Since the mass flow rate m  of a CMF can be calculated by fm K t , where fK  is the meter 

factor, and t  is the time shift between the two sensors S1 and S2, the deviation of metering viscous 
liquid can be calculated based on water a benchmark,  

  100% 100%f viscous liquid f water viscous liquid water

f water water

K t K t t t
Deviation

K t t

   
 

 
            (10) 

The simulation results have been plotted in Fig 4 for the relation between the metering deviation 
and Reynolds number Re /Dv  . It is found that when the flow is laminar or transient flow 
( Re 4000 ), the deviation is fluctuating, while the deviation will be comparably flat when the flow 
is turbulent.   
 
It is known that fluid with different viscosity may have different damping factor (Kumar and Anklin 
2011). When the oscillation of the structure domain experience damping during fluid flow, the 
driver have to excite additional force to compensate for the amplitude loss caused by the fluid’s 
damping. Since the damping affects the natural frequency of the flow tube, the meter factor 

fK changes, the change directly affects the mass flow rate. The effect of the reduction in natural 

frequency is caused by the interaction between the fluid and structure dynamics in the CMF. In the 
future compensation modeling, the damping effect shall be considered. 

4. CONCLUSION 

In this paper, a computational fluid dynamics model of U-shape CMF was developed to investigate 
the performance of CMFs influenced by on-line viscosity. The simulation results were evaluated in 
terms of the natural frequency of the vibrating system and the corresponding time difference 
between the motions of the sensing points symmetrically located on the measuring tube. The 
simulations of water and viscous liquid were compared over flow rates spanning the laminar and 
turbulent regions. The effects of viscosity on CMFs’ performance have been discussed in details. 
The findings in the simulations can be used for further compensation of deviation due to viscosity 
effects for oil and gas industry. 
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