Multiscale modelling in the knee: Macro scale errors influence cell level bone

remodelling predictions

*J. Fernandez¹, P. Pivonka², P. Hunter¹ and V. Shim¹

¹Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand, 70 Symonds St, UniServices House, Auckland 1010

²Australian Institute for Musculoskeletal Science NorthWest Academic Centre The University of Melbourne 176 Furlong Road, St Albans Vic 3021, Australia

*Corresponding author: j.fernandez@auckland.ac.nz

This study presents a multiscale model of the knee joint developed as part of the international IUPS Physiome Project. A macro level finite element knee model is used to pass down strains to a meso, micro and finally a cell level model. The macro to micro level models are solved using finite elements in the bioengineering package CMISS (www.cmiss.org) and the cell level model is integrated as a series of ODE's into the markup language CellML. This study explores the range of input errors encountered from motion capture and x-ray fluoroscopy; assumed boundary conditions; muscle force insertions/origins and magnitudes; and material property estimates. We then evaluate how they influence the trends and confidence of predictions at the cell level. A key conclusion from this study is that increased sub levels between macro and cell level models minimises the error propagated by acting as a check point against further microstructural information.

Keywords: Multiscale model; knee mechanics; bone remodelling; cell level mechanics