A Reduced-Order-Model-Based Multiple-in Multiple-out Gust Alleviation

Control Law Design for Transonic Aeroelastic wings

Chen Gang, Wang Xian, Li Yueming

State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an, Shaanxi, China, 710049

*Corresponding author: aachengang@mail.xjtu.edu.cn

Gust alleviation is very important to a large flexible aircraft. In transonic flow, a nonlinear loworder aerodynamic state space model is required to model the nonlinear aeroelastic responses duo to gust. A reduced order modeling of gust loads was proposed which bases on the proper orthogonal decomposition method. And then the open-loop and closed-loop reduced order state space model for the transonic aeroelastic system was developed. The static output feedback control scheme was used to design a simple multiple-in multiple-out gust alleviation control law. The control law was demonstrated with the Goland+ wing model with four control surfaces. The simulation results of different discrete gusts show the capability and good performance of the MIMO controller in transonic gust alleviation.

Key words :transonic gust alleviation, reduced order model, proper orthogonal decomposition, static output feed back